Toward a bioengineered heparin: challenges and strategies for metabolic engineering of mammalian cells.

نویسندگان

  • Jong Youn Baik
  • Clifford L Wang
  • Bo Yang
  • Robert J Linhardt
  • Susan Sharfstein
چکیده

Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Since Chinese hamster ovary (CHO) cells are capable of producing heparan sulfate (HS), a related polysaccharide naturally, and heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. We developed stable human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) expressing cell lines based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells. Both activity assay and disaccharide analysis showed that engineered HS attained heparin-like characteristics but not identical to pharmaceutical heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin.

Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to ...

متن کامل

Addressing endotoxin issues in bioengineered heparin.

Heparin is a widely used clinical anticoagulant that is prepared from pig intestine. A contamination of heparin in 2008 has led to a reexamination of animal-derived pharmaceuticals. A bioengineered heparin prepared by bacterial fermentation and chemical and enzymatic processing is currently under development. This study examines the challenges of reducing or removing endotoxins associated with ...

متن کامل

Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin.

Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfat...

متن کامل

Escherichia coli K5 heparosan fermentation and improvement by genetic engineering.

N-acetyl heparosan is the precursor for the biosynthesis of the important anticoagulant drug heparin. The E. coli K5 capsular heparosan polysaccharide provides a promising precursor for in vitro chemoenzymatic production of bioengineered heparin. This article explores the improvements of heparosan production for bioengineered heparin by fermentation process engineering and genetic engineering.

متن کامل

Heparin: Past, Present, and Future

Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007-2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioengineered

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2012